IWA Publishing
 IWA Publishing Journals   Subscriptions   Authors   Users   Librarians   FAQs 

Water Science & Technology: Water Supply—WSTWS Vol 9 No 4 pp 369–377 © IWA Publishing 2009 doi:10.2166/ws.2009.634

A hybrid ion exchange-nanofiltration (HIX-NF) process for energy efficient desalination of brackish/seawater

S. Sarkar and A. K. SenGupta

Department of Civil and Environmental Engineering, Lehigh University, Fritz Engineering Laboratory, 13 E Packer Avenue, Bethlehem PA, 18015, USA E-mail: sus9@lehigh.edu; arup.sengupta@lehigh.edu


ABSTRACT

This study reports a new hybrid ion exchange-nanofiltration (HIX-NF) process for desalination of sea and brackish water that can attain significant energy economy over the conventional membrane-based pressure driven processes. In this hybrid process, an ion exchange step converts monovalent chloride ions of saline water to divalent sulfate ions and the resulting solution, having a reduced osmotic pressure than the feed, is desalinated using a nanofiltration (NF) membrane. The sulfate rich reject stream from the NF process is used to regenerate the anion exchanger. Results validate that NF membranes can desalinate sodium sulfate solution at a much lower transmembrane pressure compared to RO membranes as well as yield a higher permeate flux. The sulfate-chloride selectivity of the anion exchangers plays important role in sustainability of the process. Laboratory studies have revealed that a single type of anion exchanger cannot sustain the process for saline water with different salt concentrations. However, anion exchangers with different sizes of amine functional groups (e.g. quaternary-, tertiary-, secondary- and primary amine) hold the promise that the process can be tailored to achieve sustainability. Laboratory studies have validated the basic premise of the hybrid process including greater than two times less energy requirement than RO process for the same feed water and same permeate recovery condition.

Keywords: brackish water; desalination; hybrid ion exchange; nanofiltration; sea water; sulfate-chloride ion exchange


Full article (PDF Format)


eProduct: Buy this article for £24.00 (IWA MEMBER PRICE: £18.00)
All prices include VAT. For customers where VAT should not be applied, the VAT amount will be removed upon payment