IWA Publishing
 IWA Publishing Journals   Subscriptions   Authors   Users   Librarians   FAQs 

Water Science & Technology: Water Supply—WSTWS Vol 9 No 1 pp 51–58 © IWA Publishing 2009 doi:10.2166/ws.2009.063

Adsorption kinetics and isotherm characteristics of selected endocrine disrupting compounds on activated carbon in natural waters

A. Assoumani, L. Favier-Teodorescu and D. Wolbert

Ecole Nationale Supérieure de Chimie de Rennes,CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35700, Rennes Cedex 4, France E-mail: azziz.assoumani@ensc-rennes.fr


Bisphenol A (BPA) and ethynylestradiol (EE2), two representative endocrine disrupting compounds (EDCs), were tested for their adsorbabilities onto two powdered activated carbons (PACs). The main aim of the study was to create a prediction tool for the determination of the EDCs adsorbabilities at low ng.L-1 level. Single solute solution adsorption isotherms at high concentrations, for prediction purposes, and low concentrations, for verification of the prediction, were performed for one EDC/PAC couple. Over the whole range of concentration, results showed that the Langmuir-Freundlich model better suits the adsorption phenomenon than the Freundlich or Langmuir model. Kinetics experiments were carried out on the same EDC/PAC couple. HSDM modelling of single solute adsorption kinetics at high concentration allowed determining the kinetic coefficients kf and Ds; both were shown to dominate the mass transfer mechanism. Competitive adsorption isotherms at high and low concentrations showed that downward extrapolation of low concentration adsorption capacities from solely high concentration information results in acceptable error compared to the total range isotherm. The IAST-EBC approach combined with the Langmuir-Freundlich single solute model, for the target compound, and the Langmuir model, for the EBC, appears as an acceptable global model.

Keywords: adsorption; competition; endocrine disrupting compounds; kinetics; natural organic matter; powdered activated carbon

Full article (PDF Format)

eProduct: Buy this article for £24.00 (IWA MEMBER PRICE: £18.00)
All prices include VAT. For customers where VAT should not be applied, the VAT amount will be removed upon payment